Trigonometry lesson 3

Same shape triangles	
Lesson overview In this activity students use practical measu pattern linking the ratio of sides of a triangle develop the concepts of sine, cosine and tan	ement skills and ratio calculations to find a with the angles. This lesson is designed to gent ratios of angles.
Students should: 1. have a knowledge of the concept of ratio 2. have the ability to convert fractions to decimals using a calculator to 3 decimal places 3. be able to measure the length of sides of triangles to the nearest millimetre	Grouping Step 1: whole class Step 2: groups of 3 or 4 students Step 3: whole class
Outcomes MS5.1.2 (p 139) Applies trigonometry to solve problems (diagrams given) including those involving angles of elevation and depression WMS5.1.4 Explains and verifies mathematical relationships	Individual student materials - pencil - ruler - calculator - scrap paper Group materials - one set of triangles per group. Triangle sheets A-G should be photocopied onto coloured cardboard. Carefully cut out the triangles and place each set (8 triangles in a set) into plastic bags. - One Calculating ratios for similar triangles worksheet per group Class materials - Three large charts (enlarge to A3) - one for each ratio (opp/hyp, adj/hyp and opp/adj) - for a class graph - At this point only label the graphs with the ratios - introduce the trig names sin, cos and tan at the end of this lesson
Step 1 - Show the students a large right-angled triangle with one angle marked - Remind the students about the hypotenuse (from Pythagoras' theorem) and show them the opposite and	Questioning - What is the hypotenuse of a right-angled triangle? Where do you find it? - What is ratio? - What happens to the opp/hyp ratio when the angle is large? - What happens to the opp/hyp ratio when the angle is small?

adjacent sides in relation to the marked angle

- Discuss the meaning of the words opposite and adjacent in this context
- Practice labelling right-angled triangles from the board, OHP or use Labelling right-angled triangles sheet
- Explain that the lesson involves investigations of the ratios of pairs of sides of right-angled triangles with angles of different sizes
- Discuss the word ratio and what it means in this context
- Compare opp/hyp for a very large and a very small angle, as shown in diagram, and have students estimate which one will have the larger ratio

Step 2

- Divide class into groups of 3 or 4 students
- Hand out one Calculating ratios for similar triangles worksheet and a set of triangles to each group
- Each student takes two triangles. They measure each side to the nearest millimetre and complete the worksheet for their triangles writing the ratios as a fraction and using a calculator to estimate them to 3 decimal places
- Each group completes the worksheet including the mean values for each ratio to 2 decimal places
- Members of the group stack their triangles as neatly as possible on top of each other and discuss their findings

Step 3

- When every group worksheet is completed, one member of each group brings it forward with their group's stack of triangles and briefly reports their findings
- Each group now plots its mean values on the three class graphs. At this stage,

Check that students:

- are measuring correctly to the nearest millimetre
- can convert fractions to decimals on the calculator
- can approximate a decimal to 3 decimal places
- understand how to find the mean value
- can plot the mean value for their groups set of triangles on the class graphs
- pronounce the trig ratios correctly eg. sin is pronounced 'sine'

Discussion

What did your group find when you stacked the triangles on top of one another?
They should discover that triangles with the same angles have approximately equal ratios
do not join the plotted points as the next lesson will add more values to the graph.

- Class discusses graphs
o Note the fact that triangles which have the same ratios also have the same angles
o This is the basis for scale drawings where although the triangles are different sizes, the angles are in the same proportion or ratio
o Explain to students that these ratios have special names:
- opp/hyp is sine of the angle (sin)
- adj/hyp is cosine of the angle (cos)
- opp/adj is tangent of the angle (tan)
- these ratios are used in a branch of mathematics called trigonometry or trig for short
o Where have you heard the word trig before? (possibly trig station,...)

What information can you observe from each graph?
They should be able to see that the ratio increases as the angle increases for the opp/hyp graph; the ratio decreases as the angle increases for adj/hyp and the ratio increases as the angle increases for opp/adj

What occupations use trigonometry in their jobs?
All kinds of engineers, navigator, surveyor, architect, air traffic controller, cartographer, landscape architect, meteorologist, electronics designer, oceanographer, roofing contractor, marine engineer, geologist and sheet metal, heating and airconditioning engineers.

Where is the word trigonometry derived? The word trigonometry is derived from two Greek words meaning 'triangle' and 'measurement'

