Lesson 6: Solve for Unknown Angles—Angles and Lines at a Point

Classwork

Opening Exercise

Determine the measure of the missing angle in each diagram.

What facts about angles did you use?

Discussion

Two angles $\angle A O C$ and $\angle C O B$, with a common side $\overrightarrow{O C}$, are \qquad if C belongs to the interior of $\angle A O B$. The sum of angles on a straight line is 180°, and two such angles are called a linear pair. Two angles are called supplementary if the sum of their measures is \qquad ; two angles are called complementary if the sum of their measures is \qquad . Describing angles as supplementary or complementary refers only to the measures of their angles. The positions of the angles or whether the pair of angles is adjacent to each other is not part of the definition.

In the figure, line segment $A D$ is drawn. Find $m \angle D C E$.

The total measure of adjacent angles around a point is \qquad .
Find the measure of $\angle H K I$.

Vertical angles have \qquad measure. Two angles are vertical if their sides form opposite rays. Find $m \angle T R V$.

Example

Find the measures of each labeled angle. Give a reason for your solution.

Angle	Angle	
$\angle a$		
$\angle b$		
$\angle d$		
$\angle C$		Reasure

Exercises

In the figures below, $\overline{A B}, \overline{C D}$, and $\overline{E F}$ are straight line segments. Find the measure of each marked angle, or find the unknown numbers labeled by the variables in the diagrams. Give reasons for your calculations. Show all the steps to your solutions.
1.

2.

3.

$$
m \angle c=
$$

\qquad
4.

$m \angle d=$ \qquad
5.

$m \angle g=$ \qquad

For Exercises 6-12, find the values of x and y. Show all work.
6.

\qquad

$$
c=
$$

7.

\qquad
$x=$
$y=$
8.

$x=$ \qquad
$x=$ \qquad $y=$ \qquad

10.

$$
x=\ldots
$$

11.

$$
x=
$$

12.

Relevant Vocabulary

StRAIGHT ANGLE: If two rays with the same vertex are distinct and collinear, then the rays form a line called a straight angle.

Vertical angles: Two angles are vertical angles (or vertically opposite angles) if their sides form two pairs of opposite rays.

Problem Set

In the figures below, $\overline{A B}$ and $\overline{C D}$ are straight line segments. Find the value of x and/or y in each diagram below. Show all the steps to your solutions, and give reasons for your calculations.
1.

$x=$ \qquad
$y=$ \qquad
2.

$x=$ \qquad
3.

$x=$ \qquad
$y=$ \qquad

Lesson 7: Solve for Unknown Angles—Transversals

Classwork

Opening Exercise

Use the diagram at the right to determine x and y.
$\overleftrightarrow{A B}$ and $\overleftrightarrow{C D}$ are straight lines.
$x=$ \qquad
$y=$ \qquad

Name a pair of vertical angles:
\qquad

Find the measure of $\angle B O F$. Justify your calculation.

\qquad
\qquad

Discussion

Given line $A B$ and line $C D$ in a plane (see the diagram below), a third line $E F$ is called a transversal if it intersects $\overleftrightarrow{A B}$ at a single point and intersects $\overleftrightarrow{C D}$ at a single but different point. Line $A B$ and line $C D$ are parallel if and only if the following types of angle pairs are congruent or supplementary.

- Corresponding angles are equal in measure.
- Alternate interior angles are equal in measure.
\qquad

- Same-side interior angles are supplementary.
\qquad

Examples

1.

2.

$m \angle a=$ \qquad $m \angle b=$ \qquad
3.

$m \angle c=$ \qquad
4.

$m \angle d=$ \qquad
5. An \qquad is sometimes useful when solving for unknown angles.

In this figure, we can use the auxiliary line to find the measures of $\angle e$ and $\angle f$ (how?) and then add the two measures together to find the measure of $\angle W$.

What is the measure of $\angle W$?

Exercises 1-10

In each exercise below, find the unknown (labeled) angles. Give reasons for your solutions.
1.

\qquad
$m \angle b=$ \qquad
$m \angle c=$ \qquad
2.

$m \angle d=$ \qquad
3.

$m \angle e=$ \qquad
$m \angle f=$ \qquad
4.

5.

$m \angle g=$ \qquad
$m \angle h=$ \qquad
6.

$m \angle i=$ \qquad
7.

$m \angle j=$ \qquad
$m \angle k=$ \qquad
$m \angle m=$ \qquad
8.

$m \angle n=$ \qquad
9.

$m \angle p=$ \qquad
$m \angle q=$ \qquad
10.

$m \angle r=$ \qquad

Relevant Vocabulary

Alternate interior angles: Let line t be a transversal to lines l and m such that t intersects l at point P and intersects m at point Q. Let R be a point on line l and S be a point on line m such that the points R and S lie in opposite half-planes of t. Then $\angle R P Q$ and $\angle P Q S$ are called alternate interior angles of the transversal t with respect to line m and line l.

Corresponding angles: Let line t be a transversal to lines l and m. If $\angle x$ and $\angle y$ are alternate interior angles and $\angle y$ and $\angle Z$ are vertical angles, then $\angle x$ and $\angle Z$ are corresponding angles.

Problem Set

Find the unknown (labeled) angles. Give reasons for your solutions.
1.

$m \angle a=$ \qquad
2.

$m \angle b=$ \qquad
$m \angle c=$ \qquad
3.

4.

$m \angle f=$ \qquad

Lesson 8: Solve for Unknown Angles—Angles in a Triangle

Classwork

Opening Exercise

Find the measure of angle x in the figure to the right. Explain your calculations. (Hint: Draw an auxiliary line segment.)

Discussion

The sum of the 3 angle measures of any triangle is \qquad -.

Interior of a triangle: A point lies in the interior of a triangle if it lies in the interior of each of the angles of the triangle. In any triangle, the measure of the exterior angle is equal to the sum of the measures of the \qquad angles.

These are sometimes also known as \qquad angles.

Base angles of an \qquad triangle are equal in measure.

Each angle of an \qquad triangle has a measure equal to 60°.

Relevant Vocabulary

Isosceles triangle: An isosceles triangle is a triangle with at least two sides of equal length.
Angles of a triangle: Every triangle $\triangle A B C$ determines three angles, namely, $\angle B A C, \angle A B C$, and $\angle A C B$. These are called the angles of $\triangle A B C$.

Exterior angle of a triangle: Let $\angle A B C$ be an interior angle of a triangle $\triangle A B C$, and let D be a point on $\overleftrightarrow{A B}$ such that B is between A and D. Then $\angle C B D$ is an exterior angle of the triangle $\triangle A B C$.

Exercises 1-11

1. Find the measures of angles a and b in the figure to the right. Justify your results.

In each figure, determine the measures of the unknown (labeled) angles. Give reasons for your calculations.
2.

$m \angle a=$ \qquad
3.

$m \angle b=$ \qquad
4.

$$
\begin{aligned}
& m \angle c= \\
& m \angle d=
\end{aligned}
$$

5.

$m \angle e=$ \qquad
6.

$m \angle f=$ \qquad
7.

$m \angle g=$ \qquad
8.

$m \angle h=$ \qquad
9.

$$
m \angle i=
$$

\qquad
10.

$$
m \angle j=
$$

\qquad
11.

$m \angle k=$ \qquad

Problem Set

Find the unknown (labeled) angle in each figure. Justify your calculations.
1.

\qquad
2.

$m \angle b=$ \qquad
3.

$m \angle c=$ \qquad

Lesson 9: Unknown Angle Proofs—Writing Proofs

Classwork

Opening Exercise

One of the main goals in studying geometry is to develop your ability to reason critically, to draw valid conclusions based upon observations and proven facts. Master detectives do this sort of thing all the time. Take a look as Sherlock Holmes uses seemingly insignificant observations to draw amazing conclusions.

Could you follow Sherlock Holmes's reasoning as he described his thought process?

Discussion

In geometry, we follow a similar deductive thought process (much like Holmes uses) to prove geometric claims. Let's revisit an old friend-solving for unknown angles. Remember this one?

You needed to figure out the measure of a and used the "fact" that an exterior angle of a triangle equals the sum of the measures of the opposite interior angles.
The measure of $\angle a$ must, therefore, be 36°.

Suppose that we rearrange the diagram just a little bit.
Instead of using numbers, we use variables to represent angle measures.

Suppose further that we already know that the angles of a triangle sum to 180°. Given the labeled diagram to the right, can we prove that $x+y=z$ (or, in other words, that the exterior angle of a triangle equals the sum of the measures of the opposite interior angles)?

Proof:

Label $\angle w$, as shown in the diagram.

$m \angle x+m \angle y+m \angle w=180^{\circ}$
$m \angle w+m \angle z=180^{\circ}$
$m \angle x+m \angle y+m \angle w=m \angle w+m \angle z$
$\therefore m \angle x+m \angle y=m \angle z$

The sum of the angle measures in a triangle is 180°.
Linear pairs form supplementary angles.
Substitution property of equality
Subtraction property of equality

