Key Facts and Discoveries from Earlier Grades

Facts (With Abbreviations Used in Grades 4-9)	Diagram/Example	How to State as a Reason in an Exercise or a Proof
Vertical angles are equal in measure. (vert. $\angle \mathrm{s}$)	$a^{\circ}=b^{\circ}$	"Vertical angles are equal in measure."
If C is a point in the interior of $\angle A O B$, then $m \angle A O C+m \angle C O B=$ $m \angle A O B$. ($\angle \mathrm{s}$ add)		"Angle addition postulate"
Two angles that form a linear pair are supplementary. ($\angle \mathrm{s}$ on a line)		"Linear pairs form supplementary angles."
Given a sequence of n consecutive adjacent angles whose interiors are all disjoint such that the angle formed by the first $n-1$ angles and the last angle are a linear pair, then the sum of all of the angle measures is 180°. ($\angle S$ on a line)	$a^{\circ}+b^{\circ}+c^{\circ}+d^{\circ}=180$	"Consecutive adjacent angles on a line sum to $180^{\circ} . "$
The sum of the measures of all angles formed by three or more rays with the same vertex and whose interiors do not overlap is 360°. ($\angle \mathrm{s}$ at a point)	$m \angle A B C+m \angle C B D+m \angle D B A=360^{\circ}$	"Angles at a point sum to 360°."

Facts (With Abbreviations Used in Grades 4-9)	Diagram/Example	How to State as a Reason in an Exercise or a Proof
The sum of the 3 angle measures of any triangle is 180°. (\angle sum of Δ)		"The sum of the angle measures in a triangle is $180^{\circ} .{ }^{\prime \prime}$
When one angle of a triangle is a right angle, the sum of the measures of the other two angles is 90°. (\angle sum of $r t . \Delta$)	$m \angle A=90^{\circ} ; m \angle B+m \angle C=90^{\circ}$	"Acute angles in a right triangle sum to 90°."
The sum of each exterior angle of a triangle is the sum of the measures of the opposite interior angles, or the remote interior angles. (ext. \angle of Δ)	$m \angle B A C+m \angle A B C=m \angle B C D$	"The exterior angle of a triangle equals the sum of the two opposite interior angles."
Base angles of an isosceles triangle are equal in measure. (base $\angle \mathrm{s}$ of isos. Δ)		"Base angles of an isosceles triangle are equal in measure."
All angles in an equilateral triangle have equal measure. (equilat. Δ)		"All angles in an equilateral triangle have equal measure."

