

Key Facts and Discoveries from Earlier Grades

Facts (With Abbreviations Used in Grades 4–9)	Diagram/Example	How to State as a Reason in an Exercise or a Proof
Vertical angles are equal in measure. (vert. ∠s)	$a^{\circ} = b^{\circ}$	"Vertical angles are equal in measure."
If <i>C</i> is a point in the interior of $\angle AOB$, then $m \angle AOC + m \angle COB = m \angle AOB$. (\angle s add)	$m \angle AOB = m \angle AOC + m \angle COB$	"Angle addition postulate"
Two angles that form a linear pair are supplementary. (∠s on a line)	$\frac{a^{\circ}}{b^{\circ}}$ $a^{\circ} + b^{\circ} = 180$	"Linear pairs form supplementary angles."
Given a sequence of n consecutive adjacent angles whose interiors are all disjoint such that the angle formed by the first $n - 1$ angles and the last angle are a linear pair, then the sum of all of the angle measures is 180°. ($\angle s$ on a line)	$a^{\circ} + b^{\circ} + c^{\circ} + d^{\circ} = 180$	"Consecutive adjacent angles on a line sum to 180°."
The sum of the measures of all angles formed by three or more rays with the same vertex and whose interiors do not overlap is 360° . (\angle s at a point)	A = B = C = C = C = C = C = C = C = C = C	"Angles at a point sum to 360°."

Lesson 6: Solve for Unknown Angles—Angles and Lines at a Point

(cc) BY-NC-SA This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Facts (With Abbreviations Used in Grades 4–9)	Diagram/Example	How to State as a Reason in an Exercise or a Proof
The sum of the 3 angle measures of any triangle is 180° . (\angle sum of \triangle)	$m \angle A + m \angle B + m \angle C = 180^{\circ}$	"The sum of the angle measures in a triangle is 180°."
When one angle of a triangle is a right angle, the sum of the measures of the other two angles is 90°. (\angle sum of rt. \triangle)	B A A $A = 90^{\circ}; m \angle B + m \angle C = 90^{\circ}$	"Acute angles in a right triangle sum to 90°."
The sum of each exterior angle of a triangle is the sum of the measures of the opposite interior angles, or the remote interior angles. (ext. \angle of \triangle)	$A = \frac{B}{C} = m \angle BCD$	"The exterior angle of a triangle equals the sum of the two opposite interior angles."
Base angles of an isosceles triangle are equal in measure. (base ∠s of isos. △)		"Base angles of an isosceles triangle are equal in measure."
All angles in an equilateral triangle have equal measure. (equilat. △)		"All angles in an equilateral triangle have equal measure."

