\qquad Date: \qquad

Directions: Navigate to https://goo.gl/tCd8L4 to view the corresponding PowerPoint. Be sure to click "PRESENT" in the upper right hand corner! Answer the following questions from the PowerPoint. Note that the first 9 questions are from the opening video produced by Hortensia Jiménez Díaz.

1. To understand how traits pass from one living being to its descendants, we need to go back in time to the \qquad century and a man named \qquad .
2. By breeding the pea plants he was growing in the monastery's garden, he discovered the principles that rule \qquad .
3. And in this second generation, he got both yellow and green seeds, which meant that the green trait had been \qquad by the dominant yellow.
4. He called this hidden trait the \qquad trait.
5. Now we know that these factors are called \qquad and represent the different variations of a \qquad .
6. We can have what we call a homozygous pea where both alleles are \qquad and what we call a heterozygous pea when the two alleles are \qquad .
7. This combination of alleles is known as \qquad and its result- being yellow or greenis called \qquad .
8. The uppercase Y always \qquad his lowercase friend, so the only time you get green babies is if you have two lowercase y's.
9. These days, scientists know a lot more about \qquad and \qquad .

Name: \qquad Date: \qquad

Punnett Squares

What does DNA contain?
Where is the information carried in the DNA? \qquad

Define gene \qquad
Define genotype \qquad
How many different chromosomes do humans have? \qquad How many of each? \qquad
How many total chromosomes do humans have? \qquad
What do we call the first 22 pairs of chromosomes? \qquad
What do we call the $23^{\text {rd }}$ pair of chromosomes? \qquad
What karyotype do males have? \qquad What karyotype do females have? \qquad
Define allele \qquad
Define phenotype \qquad
What are the two types of genes? \qquad
Define expressed \qquad
What type of gene is always expressed? \qquad
What type of gene is only expressed some of the time? \qquad
What does homo- mean? \qquad What does hetero- mean? \qquad
What does -zygous mean? \qquad
Define homozygous \qquad
Define heterozygous \qquad
Circle the following genotype(s) that are homozygous: GG Gg gg
Circle the following genotype(s) that are heterozygous: $\quad \mathbf{G G} \quad \mathbf{G g} \quad \mathbf{g g}$
Use the information in the table below to answer the following questions.

1. What is the genotype of an animal that is homozygous dominant for eye color? \qquad What would this animal's phenotype be?
2. What is the genotype of an animal that is homozygous recessive for eye color? What would this animal's phenotype be?

Allele	Trait	Type
G	Solid gray fur	Dominant
g	Striped gray fur	Recessive
B	Green eyes	Dominant
b	Blue Eyes	Recessive
T	Long tail	Dominant
t	Short tail	Recessive
E	Large ears	Dominant
e	Small ears	Recessive

3. What is the genotype of an animal that is heterozygous for eye color? \qquad
What would this animal's phenotype be? \qquad
4. What is the genotype of an animal that is homozygous for solid gray fur? \qquad
What would this animal's phenotype be? \qquad
5. What is the genotype of an animal that is homozygous for striped gray fur? \qquad
What would this animal's phenotype be? \qquad
6. What is the genotype of an animal that is heterozygous for fur? \qquad
What would this animal's phenotype be? \qquad

Description	Genotype	Phenotype
Homozygous recessive for tail length		
Heterozygous for ear size		
Homozygous for short tails		
Heterozygous for tail length		
Homozygous for blue eyes		
Homozygous dominant for fur		
Homozygous for striped gray fur		
Heterozygous for eye color		
Homozygous for long tails		

What do we use to predict genotypes and phenotypes? \qquad
Is the placement of the male and female gametes that important? \qquad
What does each box represent? \qquad

What percentage does each box in a Punnett square represent? \qquad
How else do we describe the outcomes of Punnett squares? \qquad

Complete the following Punnett squares and answer the questions go with each pair.
Use the table of information below to answer questions 1-4.

Allele	Trait	Type
G	Green feathers	Dominant
g	Yellow feathers	Recessive
L	Long beak	Dominant
I	Short beak	Recessive

1. LI (O^{λ}) \mathbf{x} II (q)

What percentage of offspring will have short beaks?

2. $\mathbf{L I}\left(\mathrm{O}^{\lambda}\right) \times \mathrm{LI}(\mathrm{q})$

What is the ratio of long beaks to short beaks in the offspring?

Use this information for questions 5-12 on this page.

Allele	Trait
T	Tall
t	Short
S	Smooth peas
s	Wrinkled peas
P	Purple flowers
p	White flowers

7. A plant which is homozygous

 for smooth peas is crossed with a plant that is homozygous for wrinkled peas. What percentage of offspring will have smooth peas?
10. $\mathbf{T t}\left({ }^{\lambda}\right) \mathbf{x} \mathbf{T t}\left({ }_{f}\right)$

What percentage of offspring will be tall?

3. Two birds which are heterozygous for feather color are crossed. What percentage of offspring will have yellow feathers?

6. $\left.\mathbf{P p}\left(\delta^{\lambda}\right) \mathbf{x p p}(\}\right)$ What will be the ratio of purple flowers to white flowers in the offspring?

8. A plant which is homozygous short is crossed with a plant that is heterozygous for height. What will be the ratio of tall plants to short plants in the offspring?

11. SS (${ }^{\lambda}$) \mathbf{x} ss ($\left.{ }^{(}\right)$

What percentage of offspring will be heterozygous?

12. $\operatorname{Pp}\left(O^{\lambda}\right) \times \operatorname{Pp}(q)$ What will be the ratio of purple flowers to white flowers in the offspring?

Use this information for questions 13-23 on this page.

Allele	Trait
R	red eyes
r	brown eyes
W	large wings
W	small wings
B	brown body
b	yellow body

15. $\left.\boldsymbol{\operatorname { R r }} \mathrm{C}^{\lambda}\right) \mathbf{x} \mathbf{R R}(q)$

What percentage of offspring will have brown eyes?

18. An insect which is homozygous recessive for eye color is crossed with an insect that is heterozygous for eye color. What percentage of offspring will have red eyes?

21. ww (${ }^{\lambda}$) $\mathbf{x} \mathbf{W w}$ (q)

What percentage of offspring will have large wings?

13. An insect which is heterozygous for body color is crossed with an insect that has a yellow body. What will be the ratio of brown bodies to yellow bodies in the offspring?

16. WW (${ }^{\lambda}$) $\mathbf{x} \mathbf{W w}$ (q) What percentage of offspring will have a heterozygous genotype?

19. An insect which is heterozygous for wing size is crossed with an insect that is homozygous for small wings. What will be the ratio of large to small wings in the offspring?

22. $\mathbf{B b}\left({ }^{\lambda}\right) \mathbf{x} \mathbf{B b}(q)$

What percentage of offspring will have brown bodies?

23. $\operatorname{Rr}\left(\delta^{\lambda}\right) \mathbf{x r r}(q)$ What will be the ratio of red eyes to brown eyes in the offspring?

