TASC Math Sample Test Items
When a spherical balloon is filled with air, it has a diameter of 6 inches. Which of the following gives the best estimate for the volume of air in the balloon, in cubic inches?

A 63.6
B 108.0
C 113.1
D 150.8
Test Assessing Secondary Completion™ – Sample Items, Math

Item 2

Two rectangles are similar and the dimensions shown are in centimeters.

\[
\begin{array}{c}
5 \quad 2 \\
14 \quad x
\end{array}
\]

What is the measure of \(x\), in centimeters?

- **A** 4.0
- **B** 5.6
- **C** 8.4
- **D** 11.0

This selected-response item requires the examinee to apply proportional reasoning skills in a geometric context (G-SRT.5). Writing proportions to model situations is one of the most fundamental concepts in mathematical modeling (MP.4).
A key concept in coordinate geometry is analyzing graphs to determine distances and areas that depend on the scale and units of measure. This gridded-response item requires the examinee to use coordinates to compute an area (G-GPE.7). Since a coordinate grid graphic is not given, the examinee must visualize the situation in order to calculate the area. The test will also include lower-rigor items that do include the graphic.

Test Assessing Secondary Completion™ – Sample Items, Math

Item 3

Sharon made a scale drawing of a triangular park. The coordinates for the vertices of the park are:
(–10, 5)
(15, 5)
(10, 12)

Her scale is 1 unit = 1 meter.

What is the area of the triangular park in square meters?
This selected-response item requires the examinee to apply algebraic rules to solve a linear equation (A-REI.3). The order of operations plays an important role in this item as does recognition and manipulation of like terms. Having a non-integer solution reduces the opportunity to test answer choices in the equation, though this skill as well is often assessed using gridded-response items. The item not only allows an inference to be made about the examinee’s mastery of the content standard but also provides evidence regarding the examinee’s mastery of looking for and making use of structure (MP.7).

Test Assessing Secondary Completion™ – Sample Items, Math

Item 4

What is the solution to the equation $2(x - 10) + 4 = -6x + 2$?

A $\frac{9}{7}$
B 1
C $\frac{9}{7}$
D $\frac{5}{7}$

Math
A key concept in functions is recognizing features of the graphs of the functions (F-IF.4). This selected-response item provides an opportunity for the examinee to demonstrate an understanding of how quantities change with respect to one another given the model graph.

Item 5

Water pours into a tank over a 10-minute period. The function \(f(x) \) graphed below models the flow rate, in gallons per minute (GPM).

Over which of the following intervals does the flow rate increase by the greatest amount?

A. \(x = 0 \) to \(x = 1 \)
B. \(x = 2 \) to \(x = 3 \)
C. \(x = 4 \) to \(x = 5 \)
D. \(x = 8 \) to \(x = 9 \)
Linear functions are among the most basic functions in algebra. Students become familiar with the key concepts of linear functions and learn how to use these functions to model real-life situations in basic courses (MP.4). This selected-response item requires the examinee to compare the slopes of two linear functions that are represented in a different way (F-IF.9). Representing functions algebraically, numerically, and graphically is a standard teaching technique in the mathematics curriculum.

Test Assessing Secondary Completion™ – Sample Items, Math

Item 6

The table below gives selected values for the linear function, \(f(x) \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>19</td>
</tr>
<tr>
<td>15</td>
<td>26</td>
</tr>
<tr>
<td>20</td>
<td>33</td>
</tr>
</tbody>
</table>

Which of the following functions has the same slope as \(f(x) \)?

A. \(g(x) = x + 7 \)
B. \(h(x) = 2x + 2 \)
C. \(q(x) = \frac{4}{7}x + 8 \)
D. \(p(x) = \frac{7}{5}x + 5 \)
Item 7

Tom has two cubes with the numbers 1 through 6 on the sides. If he rolls the cubes at the same time and finds the sum, the sample space of the possible outcomes is the set \{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}. Tom rolls the cubes. One of the cubes shows a number less than or equal to 3. The other cube shows the number 4. Which subset of the sample space describes the set of possible outcomes for Tom?

A \{5, 6\}
B \{4, 5, 6\}
C \{5, 6, 7\}
D \{4, 5, 6, 7\}
Item 8

The price of a certain sofa, \(S \), is $900 more than the price of a chair, \(C \). The total price for the sofa and chair is $1200. Which system of equations can be used to find the price of each piece of furniture?

A \[
\begin{align*}
C &= S - 900 \\
S + C &= 1200
\end{align*}
\]

B \[
\begin{align*}
C &= S + 900 \\
S - C &= 1200
\end{align*}
\]

C \[
\begin{align*}
C &= S + 900 \\
S + C &= 1200
\end{align*}
\]

D \[
\begin{align*}
C &= S + 1200 \\
S - C &= 900
\end{align*}
\]
Consider this polynomial expression.

\((x^2 - x + 1) + (2x^2 + x - 9)\)

What is the sum of the polynomials?

A. \(x^2 - 8\)
B. \(3x^2 - 8\)
C. \(3x^2 - 2x - 8\)
D. \(3x^2 + 2x - 8\)
Proficiency with the concept of functions involves both familiarity with functional notation and the ability to evaluate a given function for a specific numerical value (F-IF.2). This item requires the examinee to apply these skills, evaluating a basic linear equation for a given input value. Obtaining the proper solution also requires demonstrating the conceptual understanding of how to multiply negative numbers together, a skill which the Common Core introduces in grade 7.

Items 10

Consider this function.

\[f(x) = -2x + 7 \]

What is \(f(-3) \)?

<table>
<thead>
<tr>
<th>(-3)</th>
<th>(-2)</th>
<th>(-1)</th>
<th>(0)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-9)</td>
<td>(-7)</td>
<td>(-5)</td>
<td>(-3)</td>
<td>(-1)</td>
<td>(1)</td>
<td>(3)</td>
</tr>
</tbody>
</table>

Math
The time, T, it takes for 2 people working together to complete a job is given by

$$T = \frac{1}{\frac{1}{r_1} + \frac{1}{r_2}}.$$

In the equation

- r_1 is the work rate of the first person
- r_2 is the work rate of the second person

Which formula could be used to find r_1 if you knew the values for T and r_2?

A) $r_1 = \frac{T - r_2}{r_2}$

B) $r_1 = \frac{1}{T} - \frac{r_2}{r_1}$

C) $r_1 = \frac{T}{r_2} - r_2$

D) $r_1 = \frac{T r_2}{T + r_2}$